On a purely categorical framework for coalgebraic modal logic
نویسنده
چکیده
A category CoLog of distributive laws is introduced to unify different approaches to modal logic for coalgebras, based merely on the presence of a contravariant functor P that maps a state space to its collection of predicates. We show that categorical constructions, including colimits, limits, and compositions of distributive laws as a tensor product, in CoLog generalise and extend existing constructions given for Set coalgebraic logics and that the framework does not depend on any particular propositional logic or state space. In the case that P establishes a dual adjunction with its dual functor S , we show that a canonically defined coalgebraic logic exists for any type of coalgebras. We further restrict our discussion to finitary algebraic logics and study equational coalgebraic logics. Objects of predicate liftings are used to characterise equational coalgebraic logics. The expressiveness problem is studied via the mate correspondence, which gives an isomorphism between CoLog and the comma category from the pre-composition to the post-composition with S . Then, the modularity of the expressiveness is studied in the comma category via the notion of factorisation system. Dedicated to my parents
منابع مشابه
Rank-1 Modal Logics Are Coalgebraic
Coalgebras provide a unifying semantic framework for a wide variety of modal logics. It has previously been shown that the class of coalgebras for an endofunctor can always be axiomatised in rank 1. Here we establish the converse, i.e. every rank 1 modal logic has a sound and strongly complete coalgebraic semantics. As a consequence, recent results on coalgebraic modal logic, in particular gene...
متن کاملOn a Categorical Framework for Coalgebraic Modal Logic
A category of one-step semantics is introduced to unify different approaches to coalgebraic logic parametric in a contravariant functor that assigns to the state space its collection of predicates with propositional connectives. Modular constructions of coalgebraic logic are identified as colimits, limits, and tensor products, extending known results for predicate liftings. Generalised predicat...
متن کاملCompleteness for μ-calculi: a coalgebraic approach
We set up a generic framework for proving completeness results for variants of the modal mucalculus, using tools from coalgebraic modal logic. We illustrate the method by proving two new completeness results: for the graded mu-calculus (which is equivalent to monadic second-order logic on the class of unranked tree models), and for the monotone modal mu-calculus. Besides these main applications...
متن کاملExpressiveness of Positive Coalgebraic Logic
From the point of view of modal logic, coalgebraic logic over posets is the natural coalgebraic generalisation of positive modal logic. From the point of view of coalgebra, posets arise if one is interested in simulations as opposed to bisimulations. From a categorical point of view, one moves from ordinary categories to enriched categories. We show that the basic setup of coalgebraic logic ext...
متن کاملCut elimination in coalgebraic logics
We give two generic proofs for cut elimination in propositional modal logics, interpreted over coalgebras. We first investigate semantic coherence conditions between the axiomatisation of a particular logic and its coalgebraic semantics that guarantee that the cut-rule is admissible in the ensuing sequent calculus. We then independently isolate a purely syntactic property of the set of modal ru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014